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This paper describes a computer method for determining the coordinate of the center, the heat-release power,
and the sizes of a homogeneous internal cylindrical heat source in a stationary axially symmetric temperature
field arising under self-heating of a plant raw material.

Inverse heat-conduction problems (IHP) have been the subject of numerous investigations. The developed
methods of their solution and the results obtained have appeared in monographs [1–9] and other publications. The aim
of these investigations was mainly to solve the heat-conduction problems that arise in the aircraft and rocket industry,
the power-engineering industry, in foundry, and in thermal treatment of materials.

In the last few years, it has become clear that increasing fire safety is also associated with the solution of
IHPs. The location of self-heating sites of raw materials and the determination of their parameters by the results of
temperature measurements at individual points of the mass permit using means of address supply of cooling and fire-
fighting substances, which considerably simplifies the elimination of emergency situations. Along these lines, investiga-
tions where the parameters of internal heat sources are determined by the method of successive narrowing of given
intervals have been made [10–12]. Below, using the above method, identification of four parameters in reconstructing
the temperature field in a cylindrical raw material mass is carried out. We solve the inverse problem in the following
formulation.

Assume that a cylindrical raw material mass of radius Rc and height l has a zero excess temperature T = T(r,
z) on the end z = 0 and on the lateral surface r = Rc over the ambient temperature, which we assume to be a con-
stant. The lower end of the mass z = 1 is perfectly thermally insulated. The heat conductivity coefficient of the raw
material is constant and equal to λ. On the cylinder axis the center of a homogeneous heat source of the same form
is situated. It has a radius R and a height (thickness) 2H. The upper end of the heat source is separated from the
upper end of the mass by a distance ζ = H (see Fig. 1). The specific heat-release power in the heat source is constant
and equal to q0. Outside it it is equal to zero.

According to the assumptions made, the excess temperature distribution in the raw material obeys the differ-
ential equation
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and the boundary conditions

T (r, 0) = T (Rc, z) = 0 ,   Tz
′  (r, l) = 0 .

In these, ω(t) is a Heaviside function; the prime means a derivative with respect to z.
Four parameters, q0, R, H, and ζ, are the unknown quantities and are to be identified. The initial information

for their identification is the excess temperatures
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Tim = T (0, zi) ,   zi = z0 + i∆z ,   i = 0; (K − 1)
________

 ,

measured at K points on the central vertical axis of the mass. Note that to make an identification, the temperatures can
also be measured on any other vertical axes in the raw material, but this will somewhat complicate the calculations.

To determine the above parameters, we make use of the solution of the direct problem of stationary heat con-
duction in the form of a single Fourier–Bessel series [13] that satisfies the given heat-exchange conditions:

T (r, z) = 
2q0RRc

λ
 F (r, z, R, H, ζ) .
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) is a sequence of positive roots of the equation J0(s) = 0;

fm (z) = 
2

cosh (γml)
 cosh (γm (l − ζ)) sinh (γmH) sinh (γmz)   for   0 ≤ z ≤ ζ − H ;

fm (z) = 1 − 
1

cosh (γml)
 [cosh (γm (l − z)) cosh (γm (ζ − H)) + sinh (γmz) sinh (γm (1 − ζ − H))]   for   ζ − H ≤ z ≤ ζ + H ;

fm (z) = 
2

cosh (γml)
 cosh (γm (l − z)) sinh (γmH) sinh (γmζ)   for   ζ + H ≤ z ≤ l .

Expressions (1) and (2) are taken as an approximation dependence with varied parameters: R, H, and ζ. We
determine the latter so that the sum of the squared differences of measured temperatures Tim and calculated tempera-
tures Tical = T(0, zi) is minimum. To this end, we make use of the algorithm proposed in [12]. It includes the follow-
ing computer steps:

1) transition to the dimensionless values of temperatures T
__

im = TimT0m
−1  is made;

2) the interval R 2 (Rin, Rend) is given and divided into J parts, and in the external cycle by J from 0 to J
Rj = Rin + j(Rend − Rin)J

−1 are calculated;
3) the interval H 2 (Hin, Hend) is given and divided into N parts, and in the first interval cycle by n from 0

to N Nn = Hin + n(Hend − Hin)N
−1 are calculated;

Fig. 1. Design diagram.
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4) the interval ζ 2 (ζin, ζend) is taken and divided into P parts, and in the second internal cycle by p from 0

to P the following quantities are calculated: a) ζp = ζin + p(ζend − ζin)P
−1;  b) Fi = F(0, zi, Rj, Hn, ζp); c) S =

∑ 

i=0

k−1

 (T
__

im − FiF0
−1)2;

5) in the course of the calculations, those values of Rj, Hn, and ζp are stored to which there corresponds the
least sum S; they are taken to be the first approximation in the problem solution;

6) to redetermine the parameters, in the vicinity of the found values of Rj, Hn, and ζp shorter intervals of so-
lution insulation are given and the calculation is repeated; 

7) upon reaching the needed accuracy of parameter determination, R C Rj, H C Hn, and ζ C ζp are taken, and
by the formula

q0 = λT0m (2RRcF (0, z0, R, H, ζ))−1 (3)

the specific heat-release power in the heat source is calculated;
8) the results of the identification are substituted into expressions (1) and (2) and Tical(0, zi) at measurement

points are calculated.
This gives additional information on the uniformity of the Tical approximation to Tim. The approximation on

the average can be judged from the value of min S.
If, in giving the solution insulation intervals, an error (blunder) is made, then min S is attained at the edge of

the interval. In such a case, the latter should be widened (or displaced) towards adequate values.
The choice of points for temperature measurements on the cylinder axis promotes calculations, since J0(0) =

1 and in expansion (2) we do not have to calculate J0(γmr).
Let us analyze with two examples the results of the identification made for a mass of grain having [14] λ =

0.06 W/(m⋅K), Rc = 3 m, and l = 12 m.
Example 1. Calculate the parameters of the heat source at which on the mass axis at points with z coordinates

zi = 3 + 0.6i m, i = 0; 5
____

, temperatures Tim: 43, 50, 52, 51, 46, 22oC arise.
We make the identification, holding in the partial sum of series (2) 20 terms.

TABLE 1. Values of the Parameters of the Center of Self-Heating Calculated at Different M

M R, m H, m ζ, m q0, W⋅m−3

10 0.219 1.614 4.279 48.802

20 0.241 1.613 4.280 40.471

40 0.237 1.613 4.280 41.762

160 0.235 1.613 4.280 42.352

TABLE 3. Excess Temperatures near the Center of Self-Heating

z, m 10.38 10.45 10.50 10.55 10.60 10.70

T, oC 48.90 49.05 49.06 48.97 48.79 48.17

TABLE 2. Values of R, H, ζ, and q0 Calculated at Different M

M R, m H, m ζ, m q0, W⋅m−3

3 1.618 0.724 10.382 3.985

10 1.608 0.722 10.382 4.034

20 1.600 0.722 10.382 4.063

40 1.601 0.722 10.382 4.061
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Assuming R 2 (0.1, 0.6) m, H 2 (0.8, 1.8) m, at J = N = 20, P = 30, by the above computer method we
find: Rj ≈ 0.2 m, Hn ≈ 1.6 m, ζp ≈ 4.3 m, min S ≈ 5.5⋅10−4. To redetermine the results, we assume R 2 (0.15, 0.25)
m, H 2 (1.55, 1.65) m, ζ 2 (4.25, 4.35) m, and J = N = P = 20. After the calculation we obtain: Rj ≈ 0.24 m,
Hn ≈ 1.62 m, ζp ≈ 4.28 m, min S ≈ 1.79⋅10−5. We perform the second redetermination at R 2 (0.23, 0.25) m, H 2
(1.61, 1.63) m, ζ 2 (4.27, 4.29) m, and J = N = P = 20. It yields: Rj ≈ 0.241 m, Hn ≈ 1.613 m, ζp ≈ 4.280 m, and
min S ≈ 1.434⋅10−5. Restricting ourselves to the attained accuracy, by formula (3) we find q0 ≈ 40.471 W/m3.

Substituting the identification results into the solution of the direct heat conduction problem, we obtain Tical:
43.00, 50.14, 51.93, 50.97, 46.02, and 21.98oC. The calculated temperatures are in good agreement with the initial val-
ues that were assumed for making the identification.

The results of the numerical solution of the IHP depend on the number M of held members in the partial sum
of series (2) (see Table 1).

The investigation shows that the identification of H and ζ can be made at relatively small values of M. This
makes it possible to promote (simplify) the calculations, i.e., take larger M for redetermining R and q0.

Example 2. Let us see what the parameters of the heat source will be if on the mass axis at zi = 8 + i m and
i = 1; 4

____
 excess temperatures Tim: 9, 21, 45, 44, and 32oC are attained.
In the partial sum of series (2) 10 terms are held.
Given R 2 (0.5, 2.9) m, H 2 (0.1, 1) m, ζ 2 (6, 12) m, at J = N = P = 30 on computer, we obtain: Rj ≈

1.8 m, Hn ≈ 0.6 m, ζp ≈ 10.4 m, and min S ≈ 5.9⋅10−3.
To redetermine the results, we take R 2 (1.58, 1.98) m, H 2 (0.38, 0.78) m, ζ 2 (10.2, 10.6) m, and J = N

= P = 40. Having performed the calculation, we find: Rj ≈ 1.59 m, Hn ≈ 0.73 m, ζp ≈ 10.38 m, and min
S ≈ 7.80⋅10−4. We perform the second redetermination at R 2 (1.55, 1.63) m, H 2 (0.69, 0.77) m, ζ 2 (10.34, 10.42)
m, and J = N = P = 40. It yields: Rj ≈ 1.608 m, Hn ≈ 0.722 m, ζp ≈ 10.382 m, and min S ≈ 6.356⋅10−4. Restricting
ourselves to the above approximation, by formula (3) we find q0 ≈ 4.034 W/m3.

According to the solution of (1) and (2), to the identification parameters there correspond the following cal-
culated temperatures Tical: 9.00, 20.85, 44.94, 44.10, and 31.87oC. They are in fair agreement with those Tim that were
given for solving the IHP.

The results of the identification with other numbers of terms of series (2) are presented in Table 2.
In the example under consideration, the heat-source radius R is much larger than in the previous one. An in-

crease in R promotes the convergence of series (2). Therefore, a good accuracy of the identification in the second ex-
ample takes place at smaller values of M compared to those required in Example 1.

Using the results of the temperature-field reconstruction, it is easy, using expressions (1) and (2), to find the
maximum excess temperature in the raw material. On the spectral axis in the zone of the place of self-heating the val-
ues given in Table 3 have been obtained. From Table 3 it is seen that Tmax ≈ 49.06oC, and it is attained not at the
center of the heat source but at a point displaced from the center towards the heat-insulated end of the mass.

NOTATION

r and z, radial and axial coordinates; T(r, z), function of the temperature field; Rc and l, radius and height of
the cylindrical raw-material mass; R and 2H, radius and height of the place of self-heating; λ, heat-conductivity coef-
ficient of the raw material; ζ, axial coordinate of the center of the place of self-heating; q0, specific heat release in the
place of self-heating; zi, z-coordinates of points on the central axis; Tim, measured temperature values; Tical, calculated
temperature values; J0(t) and J1(t), Bessel functions of the first kind of indices zero and unity; sm, mth positive zero
of the function J0(s); S, sum of squared deviations. Subscripts: c, cylindrical; m, measured; cal, calculated; in, initial;
end, end; max, maximum.
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